需要金幣:500 個金幣 | 資料包括:完整論文 | ||
轉換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字數(shù):3406 | ||
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) |
[摘要]數(shù)形結合思想是數(shù)學中一個重要的數(shù)學思想,利用這個思想我們在解題時可以把抽象問題轉化成具體問題,使抽象思維和形象思維緊密地結合起來,即把抽象的數(shù)學語言與直觀的圖形結合起來,把數(shù)與形相互為用。本文通過對高考數(shù)學試題的分析,使中學生在解決數(shù)學問題的過程中體會數(shù)形結合的基本思想以及在利用此思想解題時應注意的問題并靈活的加以運用,尋求到最佳的解題方法。 [關鍵詞] 數(shù)學思想 數(shù)形結合 解題方法 幾何圖形
[Abstract] combining the operation with figure mathematical thinking is an important mathematical thinking, We use this idea in problem solving abstract problems can be translated into specific issues, so that the image abstract thinking and thinking closely combined, which is an abstract mathematical language and visual graphics combine, with a few mutual shape for the end. Based on the Math papers detailed analysis of the topic. secondary school students solve math problems in the process of combining the operation with figure understand the basic thinking and the use of this thinking they should pay attention to problem solving and the flexibility to be used to find the best way to solve problems. [Key words]Mathematics thought Number shape union Problem solving method Geometric figure
華羅庚先生曾說過:“數(shù)缺形時少直覺,形缺數(shù)時難入微,數(shù)形結合百般好,隔離分家萬事非”。可見數(shù)形結合的重要性。用數(shù)形結合思想解題,就是利用代數(shù)的方法來研究圖形的形狀、大小及圖形間的關系或運用圖形的性質簡化繁瑣的代數(shù)運算和邏輯推理,在運用此方法時,要充分挖掘基本量的內涵。例如點在曲線上,則點的坐標為此曲線方程的根,絕對值和復數(shù)的模的幾何意義等。用數(shù)形結合思想解題是高中數(shù)學中一個重要的方法,下面就結合近幾年的高考試題,從數(shù)形結合思想所包含的兩個方面來探索數(shù)形結合思想在高中數(shù)學中的應用。 |