需要金幣:500 個金幣 | 資料包括:完整論文 | ||
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字?jǐn)?shù):4368 | ||
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) |
摘要:數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,它使某些抽象的數(shù)學(xué)問題直觀化、生動化給人以直觀感.本文論述了如何用數(shù)形結(jié)合方法來解答高中的一些數(shù)學(xué)題目,其重點在于論述如何把數(shù)與式的代數(shù)信息和點與形的幾何信息有機和諧地結(jié)合在一起;同時,本文不僅論述一種解題方法,還在于培養(yǎng)學(xué)生的數(shù)學(xué)基本功、解題思維、創(chuàng)造性與發(fā)散性思維等思想.本文從數(shù)向形的轉(zhuǎn)化與形向數(shù)的轉(zhuǎn)化兩方面來論述主題. 關(guān)鍵詞: 數(shù)形結(jié)合 思想方法
【Abstract】 : Several Shapes Combinations mathematical problem-solving methods used in, it makes some abstract mathematical problem visualization, of giving vivid visual sense. This paper discusses a method of combining the operation with figure how to answer some of the high school math questions its focus is on how to incorporate a number and type of algebra with information and points of geometry information organic harmonious combination; Meanwhile, the paper not only deals with a problem-solving approach, but also to nurture the basic skills of mathematics, problem-solving thinking, creativity and divergent thinking such thoughts. This paper to the shape of a few into shape and to the conversion of several discussed two topics. 【Keywords】: Several Shapes Combinations Thinking
數(shù)學(xué)研究的對象是現(xiàn)實世界的空間形式和數(shù)量關(guān)系,即“形”與“數(shù)”的相互結(jié)合,稱為數(shù)形結(jié)合.數(shù)形結(jié)合是使抽象思維和形象思維相互作用來實現(xiàn)數(shù)量關(guān)系與圖形性質(zhì)的相互轉(zhuǎn)化,是一種極富數(shù)學(xué)特點的信息轉(zhuǎn)換,它不僅使某些抽象的數(shù)學(xué)問題直觀化、生動化、給人以直觀感,而且使許多復(fù)雜的數(shù)學(xué)問題迎刃而解,達(dá)到柳暗花明. 數(shù)形結(jié)合法就是根據(jù)數(shù)學(xué)問題的條件與結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義,它將數(shù)與式的代數(shù)信息和點與形的幾何信息互相轉(zhuǎn)換,最終使數(shù)量關(guān)系和空間形式巧妙、和諧有機結(jié)合在一起.著名數(shù)學(xué)家華羅庚曾說:“數(shù)無形時少直覺,形少數(shù)時難入微” [1].這足以說明“以形助數(shù)”和“以數(shù)輔形”的重要性所在,即進(jìn)一步強調(diào)了數(shù)形結(jié)合思想在數(shù)學(xué)解題中的地位與作用. 數(shù)形結(jié)合思想方法在解題中的應(yīng)用是非常廣泛的,縱觀多年來的高考試題,巧妙運用數(shù)形結(jié)合的思想方法解題可起到事半功倍的效果.現(xiàn)將數(shù)形結(jié)合思想在數(shù)學(xué)解題中的應(yīng)用從以下兩方面進(jìn)行探討. |